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J .  Phys. A: Math. Gen. 18 (1985) L673-L675. Printed in Great Britain 

LETTER TO THE EDITOR 

Finding ground states in random-field Ising ferromagnets? 

Francisco BarahonaS 
Departamento de Matemiticas, Universidad de Chile, Casilla 5272, Santiago 3, Chile 

Received 19 A p d  1985 

Abstract. We discuss the similarities between random-field Ising ferromagnets and two- 
dimensional Ising spin glasses. 

For a random-field Ising ferromagnet (RFIF) with sites {1,2,. . . , n} we shall study the 
problem of obtaining a ground state, and the similarities with the same problem in 
two-dimensional ( 2 ~ )  Ising spin glasses in a zero field. 

We are looking for the minimum of 

where the numbers Ju are non-negative and the variables Si E {-1, l}, for 1 6  i s  n. 
Barahona (1982) classified some of these models according to their computational 

complexity. The 2~ problem is polynomially solvable (cf Bieche et a1 1980). The RFIF 
problem is also polynomially solvable; in fact, Picard and Ratliff (1974) pointed out 
that this special case of a quadratic discrete optimisation problem can be reduced to 
a minimum-cut problem. 

Barahona et a1 (1982) showed that the 2~ problem can be reduced to a linear 
programming problem over a polyhedron defined by the frustrated contours. This has 
been done using the ‘Chinese postman theorem’ of Edmonds and Johnson (1973). 
This fact allows us to use linear programming duality to obtain information about the 
degeneracy of the ground state. 

The purpose of this letter is to show that the same is true for the RFIF model. This 
is based in another classical theorem of polyhedral combinatorics, the ‘max-flow 
min-cut theorem’ of Ford and Fulkerson (1962). 

In order to use the concept of ‘frustration’ introduced by Toulouse (1977) let us 
add one more spin Sn+l E {-1, l}, and we will look for the minimum of 

n-1 n 

H’= - 1 JijSiSj - FiSiSn+,. 
i = l  j = i + l  i = l  

It is clear that the minimum of H’ is the same as the minimum of H. 
Let us define the graph G = ( V , E )  where V={l ,  . . . ,  n,n+l} ,  for 1 < i < j < n  

(i, j) E E if Jv > 0, and (i, n + 1) E E for i = 1, . . . , n. Frustrated contours in G corre- 
spond to cycles in G containing exactly one edge of type (i, n + 1) with F, < 0. It is 
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well known that finding the minimum of H’ is equivalent to obtaining a spin configur- 
ation that minimises the weight of the violated edges. 

Let us introduce the variables xlJ for each ( i , j )  E E, where 

if ( i ,  j )  is violated [: otherwise. x y  = 

Our problem is equivalent to minimising 

n - 1  n n 

C C J+ij+ i = l  C IFiIxl,n+1 
i = l  j = i + l  

subject to 

( a )  c x i j 2 1  for each frustrated contour C 
( i , j ) E C  

( b )  x o 2 O  for all ( i , j )  E E (1) 

(c )  x,. integer valued. 

In what follows we will show that this problem is equivalent to the linear program- 
ming problem obtained by dropping condition ( c ) .  To see this let us define G‘ = ( V’, E’)  
where 

V ’ = { 1 , 2 , .  . . ,  n}u{d,e} 

for l s i < j < n  ( i , j ) E  E ‘  if J,>O 

for l s i s n  
( d ,  i )  E E’ 
( i ,  e ) E  E ’  

if F i > O  
if F, < 0. 

From the max-flow min-cut theorem (cf Fulkerson 1 9 7 1 )  we conclude that the 
problem of minimising 

n - l  n 

C Ji,xij + Fhr + C IFiIxie 
J ’ I + l  ( d , i ) E E  ( i , e ) c E ’  

subject to 

1 

XIJ 3 0 

for each path P between d and e 

( 2 )  
( I ,J)SP 

for each edge ( i , j )  E E ‘  

has an integer-valued optimal solution. 
Since the graph G’ has been obtained from the graph G by splitting the node n + 1 ,  

it is clear that each frustrated contour of G corresponds to a path between d and e 
and vice versa; hence problem (2) is the same as problem ( 1 )  without the condition 
(c).  The same kind of idea has been used by Barahona ( 1 9 8 3 ) .  

In fact, problem ( 2 )  can be solved in O( n’) calculations by finding a minimum cut 
in G’, the edges in the cut corresponding to the violated edges of G. 

The linear programming problem defined by ( 1 )  without (c ) ,  has the following dual: 
maximise 

1 { y c :  C is a frustrated contour} 
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subject to 

C { y C :  ( i , j ) E  C ) c J v  

C { y c :  ( i , n + l ) E C } s I F i J  for l a i s n  

Y C 2 0  

for l s i < j s n  

for each frustrated contour C. 

The solution of this can be obtained by finding a maximum flow in the graph G'. 
The amounts of flow that should be sent by each path between d and e are the values 
of the dual variables associated with the frustrated contours. They can be interpreted 
as a repartition of the violation energy among the frustrated contours. This dual 
information permits us to study the rigidity of the ground states as has been done in 
Barahona er al (1982). 
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